The cyclopentane ring is in the envelope form rather than the common half-chair form. The carbon atoms 3, 4, 5 and 6 lie on a plane. The methylene groups on C(4) and C(5) are eclipsed, with a twist of only 1° around the C(4)–C(5) bond. The smallest valence angle is at the puckered carbon atom C(7).

The carbon skeleton is not significantly twisted; the twists around the pseudo bonds C(2)-C(15), C(10)-C(14) and C(3)-C(6) are less than 0·1°. The H-C-C-H torsional angles around the C-C bonds in the cyclohexane ring systems vary from 52 to 70° with a mean of $59 \pm 2^{\circ}$. The smallest angle is around the C(2)-C(3) bond and the largest one is around the C(9)-C(10) bond. The H-C-C-H torsion angles around the C(3)-C(4) and C(5)-C(6) bonds in the cyclopentane ring are $(-31, 91^{\circ})$ and $(30, -87^{\circ})$ and are semistaggered.

The packing diagram of the structure as viewed down the *b* axis is shown in Fig. 3. There are no unusually short contacts in the structure, and the H---H distances less than 2.6 Å are shown in the Figure.

We thank Professor P. von R. Schleyer for supplying the crystals and for his interest in the work. This research was supported by Grant No. GP 15977 from the National Science Foundation.

References

- ALDEN, R. A., KRAUT, J. & TAYLOR, T. G. (1968). J. Amer. Chem. Soc. 90, 74.
- ALTONA, C. & SUNDARALINGAM, M. (1970). Tetrahedron, 26, 925, and references therein.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Crystallographic Full-Matrix Least-Squares Program. Report ORNL-302, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, I. L. & KARLE, J. (1965). J. Amer. Chem. Soc. 87, 918.
- KARLE, I. L. & KARLE, J. (1966). Acta Cryst. 21, 860.
- LONG, R. E. (1965). Ph.D. Thesis, University of California, Los Angeles.
- NORDMAN, C. E. & SCHMITKONS, D. L. (1965). Acta Cryst. 18, 764.
- RAO, S. T., SUNDARALINGAM, M., OSAWA, E., WISKOTT, E. & SCHLEYER, P. VON R. (1970). Chem. Commun. p. 861.
- Schleyer, P. von R., Osawa, E. & Drew, M. G. B. (1968). J. Amer. Chem. Soc. 90, 5034.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination. New York: Macmillan.

Acta Cryst. (1972). B28, 699

Die Strukturen des Moleküls und des zweifach negativ geladenen Anions der *trans*-Cyclohexandicarbonsäure(1,4)

VON P. LUGER, K. PLIETH AND G. RUBAN

Freie Universität, Institut für Kristallographie, 1 Berlin 33, Takustrasse 6, Deutschland

(Eingegangen am 12. November 1970)

The structure of a potassium salt of *trans*-cyclohexane-1,4-dicarboxylic acid, chemical formula $2C_8H_{11}O_4K.C_8H_{12}O_4$ or $C_8H_{10}O_4K_2.2C_8H_{12}O_4$, was solved by X-ray analysis. Investigations of the bond lengths of the carboxylic groups led to the conclusion that the correct formula is $C_8H_{10}O_4K_2.2C_8H_{12}O_4$.

Wie wir bereits mitgeteilt haben (Luger, Plieth & Ruban, 1970) gelang uns im Rahmen einer Untersuchungsreihe an Cyclohexanderivaten die Darstellung des Mono-Kalium-sesqui[Cyclohexandicarbonsäure(1,4)]-salzes.

Mit den vorläufigen Ergebnissen einer röntgenographischen Strukturbestimmung konnten wir zeigen, dass die Substanz in der Raumgruppe $P\overline{1}$ mit zwei K⁺-Ionen und drei Säure- bzw. Säurerestmolekülen kristallisiert. Kristallographische Daten sind in Tabelle 1 enthalten.

Dabei befindet sich nicht nur der Schwerpunkt eines Cyclohexanringes in einem Symmetriezentrum, sondern alle drei Moleküle sind um die speziellen Lagen $\frac{1}{2}, 0, \frac{1}{2}; 0, 0, \frac{1}{2}$ bzw. $\frac{1}{2}, \frac{1}{2}, 0$ angeordnet.

Im Rahmen dieser Arbeit sollen die Ergebnisse einer

weiteren Verfeinerung der Struktur mitgeteilt werden. Es konnten die Parameter sämtlicher Wasserstoffatome bestimmt werden und aus den Bindungslängen an den Carboxylgruppen die Entscheidung zugunsten einer der beiden möglichen chemischen Formelngetroffenwerden. Das nach der Schweratommethode über die Kalium-Parameter bestimmte Strukturmodell wurde mit anisotropen Temperaturfaktoren für alle Atome durch das least-squares Programm *ORFLS* des Programmsystems *X-ray* 63 (1963) bis zu einem *R*-Wert von 8,3% verfeinert. Einer in diesem Stadium berechneten Differenzsynthese konnten sämtliche Wasserstoffatomlagen entnommen werden. Weitere Verfeinerungen, die bei den Wasserstoffatomen jedoch isotrop durchgeführt wurden, konvergierten bei einem *R*-Wert von 6,3%. Tabelle 1. Kristallographische Daten des Mono-Kalium-sesqui[Cyclohexandicarbonsäure (1,4)]-salzes

Chemische Formel:	$2C_8H_{11}O_4K.C_8H_{12}O_4$
	oder
	$C_8H_{10}O_4K_2.2C_8H_{12}O_4$
Formelgewicht: 592	
Dichte: $\rho_{exp} = (1,44)$	\pm 0,05) g.cm ⁻³
$\rho_{r\ddot{o}} = 1,44$	g.cm ⁻³
Gitterkonstanten:	
$a_1 = (10, 439 \pm 0, 004)$	4) Å $\alpha_1 = (97,793 \pm 0,006)^\circ$
$a_2 = (10,569 \pm 0,003)$	$\alpha_2 = (100,090 \pm 0,020)$
$a_3 = (6,283 \pm 0,003)$	$\alpha_3 = (87,460 \pm 0,010)$
Zellvolumen: (676,02	$\pm 0,01)$ Å ³
F(000) = 312 Raum	gruppe: $P\overline{1}$ Z=1
Anzahl der vermesser	nen Reflexe: 2577, davon 99 unbeobachtet.
Mit Cu Ka-Strahlung	g (Ni-Filter) auf dem Automatischen Ein-
kristalldiffraktome	ter der Fa. Siemens gemessen.
Linearer Schwächung	gskoeffizient: $\mu = 36,3 \text{ cm}^{-1}$.

Diskussion der Struktur

Sämtliche Bindungslängen können der Fig. 1 entnommen werden. Die Standardabweichungen betragen im Durchschnitt 0,005 Å, ausser bei C-H und O-H-Bindungen, dort liegen sie bei 0,07 Å. Die spezielle Anordnung der Moleküle um drei Symmetriezentren weist schon auf die chemische Formel $C_8H_{10}O_4K_2$. $2C_8H_{12}O_4$ hin, da beim sauren Salz die Zentrosymmetrie durch ein Wasserstoffatom in allgemeiner Lage gestört würde. Unterstützt wird diese Behauptung durch die Bindungsverhältnisse an den Carboxylgruppen.

Es konnte festgestellt werden, dass zwei verschiedene Typen von Carboxylgruppen in der Struktur vorkommen. Die der Moleküle 1 und 3 haben eine kurze C-O-Bindung mit 1,213 bzw. 1,201 Å und eine lange mit 1,322 bzw. 1,320 Å. Dagegen sind beim Molekül 2 beide C-O-Bindungen mit 1,262 und 1,268 Å etwa gleich lang. Zwischen O(5') und O(2) bzw. zwischen O(6') und O(9') besteht ein Wasserstoffbrückenbindungen anzeigender Abstand von 2,555 bzw. 2,558 Å. (Mit ' sind äquivalente Atomlagen bezeichnet).

Tabelle 2. Bindunkswingel

Der Scheitel befindet sich am mittleren atom

$\begin{array}{c} C(6)-C(1)C(2)\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)\\ C(7)-C(1)C(6)\\ C(7)-C(1)C(2)\\ O(1)-C(7)C(1)\\ O(2)-C(7)C(1)\\ O(2)-C(7)C(1)\\ O(1)-C(7)O(2)\\ O(5)-O(15)-C(9)\\ O(6)-C(15)-C(9)\\ O(5)-C(15)-O(6) \end{array}$	$\begin{array}{c} 111,1 (3)^{\circ} \\ 111,5 (3) \\ 111,5 (3) \\ 111,5 (3) \\ 111,5 (3) \\ 124,4 (3) \\ 112,4 (4) \\ 123,2 (2) \\ 120,8 (3) \\ 117,6 (4) \\ 121,6 (2) \end{array}$	$\begin{array}{c} C(19)-C(19)-C(10)\\ C(9)-C(10)-C(11)\\ C(10)-C(11)-C(12)\\ C(15)-C(9)-C(16)\\ C(15)-C(9)-C(10)\\ C(22)-C(17)-C(18)\\ C(17)-C(18)-C(19)\\ C(18)-C(19)-C(20)\\ C(22)-C(17)-C(23)\\ C(23)-C(17)-C(18)\\ O(9)-C(23)-C(17)\\ O(10)-C(23)-C(17)\\ O(10)-C(13)-C(17)\\ O(10)-C(11)\\ O(10)-C(11)-C(11)\\ O(10)-C(11)\\ O(10)-C(11)-C(11)\\ O(10)-C(11)\\ O(10)-C(1$	109,5 (4)° 111,9 (3) 111,6 (4) 111,3 (4) 111,2 (3) 110,2 (3) 111,3 (4) 115,5 (3) 109,2 (4) 110,7 (3) 113,0 (4)
O(5)-C(15)-O(6)	121,6 (2)	O(9) = C(23) = C(17) O(10) = C(23) = C(17) O(9) = C(23) = O(10)	113,0 (4) 124,6 (4) 122,5 (4)

Fig. 1. Projektion der Elementarzelle in x-Richtung mit eingetragenen Bindungslängen ($y' = y \sin \gamma$, $z' = z \sin \beta$). Molekül 2 und 3 liegen übereinander, sind aus Übersichtsgründen aber nur je einmal gezeichnet worden.

Das zwischen O(2) und O(5') gelegene Wasserstoffatom H(10) hat zum O(2) einen Abstand von 0,80 Å, zum O(5') dagegen 1,79 Å. Das auf der Wasserstoffbrücke O(6')–O(9') liegende Atom H(20) hat zum O(9') einen Abstand von 1,01 Å, zum O(6') einen von 1,59 Å.

Fig. 2. ORTEP-Zeichungen (a) des Säuremolekules, (b) des zweifach negativ geladen Anions.

Fig. 3. Schematische Darstellung des Gitters ($x' = x \sin \beta$, $y' = y \sin \alpha$).

Daher muss das H(10) dem O(2), das H(20) offensichtlich dem O(9') zugeordnet werden, wofür auch die langen C(7)–O(2) und C(23)–O(9)-Bindungen sprechen, die als die C–O-Einfachbindungen angesehen werden können, während die kurzen Bindungen C(7)– O(1) und C(23)–O(10) dann C=O-Doppelbindungen sein müssen. Es kann also der Schluss gezogen werden, dass die Moleküle 1 und 3 als freie Säure anzusprechen sind.

Zu den unterschiedlichen O-H-Abständen in den bei-

Tabelle 3. Endgültigen Atomparameter für das Kalium-Salz der trans-Cyclohexandicarbonsäure(1,4)

In Klammern die Standardabweichungen bezogen die letzte ausgedrukte Stelle.

Werte sind mit 10⁴ multipliziert.

	x	У	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
К	1049 (1)	4368 (1)	2338 (1)	64 (1)	63 (1)	90 (10)	17 (1)	21(1)	26 (1
O(1)	8427 (3)	3899 (3)	527 (4)	59 (3)	98 (3)	123 (12)	18 (2)	19 (3)	19 (4
O(2)	7705 (3)	3543 (4)	3524 (4)	73 (3)	170 (5)	127 (12)	38 (3)	14 (4)	87 (5
O(5)	-43(3)	6554 (2)	4383 (4)	79 (3)	61 (3)	103 (12)	19 (2)	-12(3)	34 (3
O(6)	8550 (3)	7031 (3)	1526 (4)	113 (4)	61 (3)	95 (12)	14 (2)	- 54 (4)	10 (3
O(9)	3264 (4)	1472 (3)	83 (5)	140 (4)	117 (4)	116 (13)	66 (3)	-17(5)	24 (4
O(10)	2929 (3)	2542 (3)	3223 (5)	122 (4)	111 (4)	156 (13)	68 (3)	17 (4)	41 (4
C(1)	6119 (4)	4136 (4)	630 (6)	55 (4)	83 (4)	99 (9)	15 (3)	6 (4)	34 (5
C(2)	4022 (4)	5220 (5)	1424 (6)	62 (4)	126 (6)	86 (9)	31 (4)	23 (5)	45 (6
C(3)	5452 (4)	4950 (5)	2336 (6)	70 (4)	140 (6)	67 (9)	37 (4)	16 (5)	38 (6
C(7)	7540 (4)	3858 (4)	1527 (5)	62 (4)	74 (4)	91 (8)	14 (3)	4 (4)	19 (4
C(9)	9343 (4)	8775 (3)	4176 (5)	82 (4)	55 (3)	43 (8)	10 (3)	11 (4)	11 (4
C(10)	-34(6)	9501 (4)	2720 (6)	179 (7)	64 (4)	54 (9)	-31(4)	56 (6)	-6 (5
C(11)	-30(6)	925 (4)	3476 (6)	200 (8)	64 (4)	46 (9)	-25(5)	3 (7)	28 (5
C(15)	9284 (4)	7363 (3)	3332 (5)	71 (4)	57 (3)	61 (8)	13 (3)	5 (4)	25 (4
C(17)	4522 (4)	817 (4)	3267 (6)	77 (4)	82 (4)	105 (9)	32 (3)	12 (5)	34 (5
C(18)	4899 (5)	8610 (5)	4416 (7)	114 (6)	67 (4)	195 (12)	22 (4)	-47(7)	22 (6
C(19)	3913 (5)	9537 (4)	3300 (7)	96 (5)	75 (4)	219 (13)	21 (4)	-41 (6)	29 (6
C(23)	3496 (4)	1709 (4)	2232 (6)	80 (4)	75 (4)	130 (4)	25 (3)	11 (5)	41 (5

	Tabelle	3 (F	ort.)	
Die x , y - und	z-Werte	sind	mit	103	multipliziert

702

				•
	x	у	z	$B(Å^2)$
H(10)	846 (4)	339 (4)	398 (7)	1,9 (10)
H(20)	729 (8)	790 (8)	89 (14)	10,9 (26)
H(12)	439 (4)	676 (4)	-27(7)	1,6 (10)
H(21)	551 (5)	441 (5)	363 (7)	2,2 (10)
H(22)	594 (5)	582 (5)	260 (8)	2,2 (11)
H(31)	359 (4)	577 (4)	236 (7)	1,4 (9)
H(32)	347 (4)	438 (4)	100 (7)	2,0 (10)
H(41)	960 (5)	927 (5)	102 (8)	2,6 (11)
H(42)	093 (5)	905 (5)	259 (9)	3,8 (13)
H(52)	843 (4)	914 (4)	405 (7)	1,2 (9)
H(61)	021 (5)	140 (5)	266 (9)	3,9 (13)
H(62)	898 (5)	129 (5)	347 (9)	3,7 (13)
H(71)	359 (5)	913 (5)	164 (8)	3,0 (12)
H(72)	316 (5)	965 (5)	403 (8)	2,8 (12)
H(82)	524 (4)	63 (4)	237 (7)	0,8 (8)
H(91)	446 (5)	779 (5)	431 (9)	3,9 (13)
H(92)	568 (5)	842 (5)	327 (9)	3,5 (13)

den Wasserstoff brücken ist zu bemerken, dass die O(2)-H(10)-O(5')-Brücke vermutlich nur schwach ausgebildet ist. Daf ür sprechen auch die Unterschiede der Temperaturfaktoren der beiden H-Atome. Während das H(10) mit 1,9 Å² einen isotropen Temperaturfaktor hat, der durchaus vergleichbar ist mit denen der Cyclohexanring-Wasserstoffatome, hat das H(20) in der Brücke O(6')-H(20)-O(9') einen Temperaturfaktor von 10,9 Å², der darauf schliessen lässt, dass der Ort des Atoms nicht genau lokalisierbar ist, sondern auf dem Verbindungsvektor O(6)-O(9) schwingt. Wegen der isotropen Verfeinerung des Temperaturfaktors erhält man dann eine grosse Schwingungskugel.

Für das Molekül 2 bleibt nur noch der Schluss übrig, dass sich es hier um das zweifach negativ geladene Anion der *trans*-Cyclohexandicarbonsäure(1,4) handeln muss. Die besonders auffälligen gleichen C-O-

Tabelle 4. Beobachtete und berechnete Strukturfaktoren

Reihenfolge: H, 10Fo, 10Fc.

H,-12,0 1 34 34 2 73 75	1 777 -772 2 67 -57	1, 54 -5° 11 17 -21 12 54 -49	3 63 -68 4 197 -192 5 111 -111	4 114 -112 1 50 -86 2 90 -3	H,-7,1 -1 20 2" 0 30 43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 109 -102 7 166 -159 8 78 -190	5 57 63 6 206 - 205 7 53 47	9 81 -75 13 62 -62 11 24 -26
3 129 127 4 35 38 8 -11 -1	3 71 -72 4 324 -323 5 74 -23 6 73 -77	1++2+2 (250 - 255 1 493 -513	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 25 -24 4 53 9. 5 71 73 6 57 63	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	й 100 1 6 57 -ог 9 12 1 13 75 -ов	1. 81 82 11 108 100 12 49 45	$\begin{array}{c} 0 & 32 & 21 \\ 1^{0} & 77 & 71 \\ 11 & 34 & -33 \end{array}$	H+6+1 -15 28 27 -3 55 55
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7 215 214 8 80 67 9 1. 3	2 668 669 3 137 131 4 63 -52	10 11 - 12	H,-10,1 -8 49 41	5 73 -71 6 77 02 7 21 15	11 53 -53	F+C+1 -12 106 99	-12 79 4	-3 11* 7 -7 13 17 -6 2?7 190 -5 135 -32
6 35 35	10 15 -9 11 29 -35	0 280 -276 7 80 -87 34 25	1 121 -115 2 7J -76 3 14 16	-7 51 47 -6 31 28 -5 13 5 -4 62 -55	9 122 124 16 75 -67	-12 26 -20 -11 1.* 5 -12 7c -10 -9 49 52	-10 12 -14 -0 126 -120 -1 74 -73	-10 74 -72 -9 265 -765 -8 117 -111	-4 67 -63 -3 143 77 -2 66 -65
нэ-1СэС 1 5* -3 2 67 64	1 1 to 98 2 64 62 3 173 165	0 12 5 10 86 80 11 120 110	4 91 86 5 36 37 6 17 12	-3 95 -94 -2 27 -20 -1 1.1* -16	14,-0,1 -11 07 -78 -13 11 -98	-8 132 128 -7 52 46 -6 120 -134	-7 99 -92 -6 116 -114 -5 18" -184	-7 128 124 -6 67 64 -5 189 183	$\begin{array}{c} -1 & 149 & -144 \\ 3 & 25 & 15 \\ 1 & 172 & 169 \\ 2 & 216 & 216 \end{array}$
3 46 -43 4 23 25 5 78 78 6 18 -16	4 318 326 5 238 322 5 79 -50 7 77 78	12 47 45 h, 3, 7	7 34 -33 8 42 -39 9 51 -52	7 97 75 1 197 194 2 74 76 3 13* -5	-9 12 -14 -8 21 -21 -7 33 26 -61 52	-5 224 -231 -4 380 -378 -3 492 -503 -2 47 53	-3 164 181 -2 666 -697 -1 113 -126	-1 233 245 -1 234 -235 -1 599 -6*4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 19 -30 H,-9,'	6 105 -135 9 74 -73 13 43 30	1 641 661 2 366 -359 3 253 -251	H, 9, 8 1 16 - 9 1 143 142	4 70 -60 5 52 -54 6 147 -145	-5 136 -127 -4 17 -13 -3 133 -131	-1 64 88 7 227 232 1 513 523	0 78 -67 1 278 -300 2 171 -157	7 455 -463 1 70 76 2 196 181	6 195 - 181 7 11= 1 8 54 - 51
1 75 70 2 17 15 3 68 -67 4 53 55	11 24 25 12 133 128	4 37 4(5 184 181 6 17(167 7 143 134	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 17 -2 H,-7,1 -9 18 -22	-2 185 -103 -1 179 -178 -3 50 -57 1 1 6 -145	3 671 -674 4 10 -6 5 287 -766	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 17 -1 5 54 -56 6 117 138	10 42 73
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 271 278 2 69 57 3 314 -326	6 220 213 7 28 37 16 69 -68	6 97 -80 7 29 -31 8 7 -8	-8 58 -47 -7 61 -57 -6 84 -73	2 113 -1.0 3 50 44 4 77 50	142 -143 7 135 -128 2 57 -59	7 177 17" 2 86 79 9 42 42	7 63 -65 2 41 -33 9 96 -89	-17 36 31 -7 28 15 -3 37 -4
B 77 76 HC.C. 1 34 -36	4 209 -203 5 144 133 6 4* -1 7 121 121	11 66 -60 12 73 -60 Fr413	4 62 -7 H+17,7 1 85 -72	-5 110 -6 -4 52 43 -3 47 45 -2 93 85	5 125 125 6 83 -13 7 178 -102 8 187 -188	1. 2. 1e 11 6. 56	11 137 -122 11 82 -80	11 c7 -c*	-6 12 -4 -5 136 127 -4 140 141
2 53 -54 3 24 22 4 238 242 5 16 -5	8 97 132 9 124 122 11 61 57	1 347 -347 1 17 -7 2 37 43 3 69 74	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-1 11 -191 179 -1731 128 -1282 346 -343	9 127 -122 17 98 -92 84-54	-12 21 25 -11 33 31 -13 11 8	-12 41 $-37-11$ 60 $-66-10$ 16 12	-11 67 65 -10 102 154 -0 00 00 -2 386 238	-3 177 187 -2 94 91 -1 206 199 7 123 172
6 27 26 7 5* 2 8 115 -119	12 104 -95	4 81 84 5 12, -116 6 123 -121	5 29 29 6 41 35 7 56 56	3 115 -114 4 28 -28 5 57 -6	-11 65 61 -13 53 57 -9 21 24	-> 121 -116 -> 167 -166 -7 134 -135	-9 122 127 -8 25 -83 -7 144 143	-7 179 -132 -6 42 34 -5 76 -72	1 177 -157 2 155 -148 3 53 44
9 115 -12. H+-7. 1 133 137	2 335 330 3 629 636 4 68 675	200 -190 9 57 -63 1. 50 63	F, 11, 1 7 2	7 82 82 3 3* -2	-8 48 -43 -7 43 35 -6 81 -67 +5 242 -245	-6 12. 122 -5 2 4 2.1 -4 114 115 -3 512 536	-6 166 168 -6 66 67 -4 175 -173 -3 176 -178	-3 273 -173 -2 311 273 -1 576 63	5 165 152 6 129 113 7 131 165
2 71 71 3 67 -67 4 276 -280 5 352 -371	5 57 -44 5 55 55 7 8 6	11 51 48 H, 5, 3 - 93 -85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_{2} = 8 + 1$ -10 - 16 - 27 -3 - 7 + -11 -6 - 107 - 95	-6 46 41 -3 15 -13 -2 166 177	-2 668 731 -1 100 -179 3 169 -179	-2 318 - 722 -1 357 353 C 616 - 652	- 421 4:5 1 174 157 2 287 274	8 133 113 3 13* 6 10 3* 7
6 42 -4 ⁶ 7 1 ³⁰ -105 8 17 -21	$\begin{array}{c} 2 & 13 \\ 7 & 13 \\ 17 & 67 \\ 17 & 67 \\ -63 \\ 11 & 17 \\ -14 \end{array}$	1 175 -174 2 596 -585 3 22 -16	5 23 -18 6 4J -39	-7 77 71 -6 66 60 -5 16 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 100 -100 2 353 -356 3 92 -92 4 101 105	2 546 557 3 380 376 4 349 343	4 43 -37 5 49 -43 6 115 -111	F.8.1 -9 18 18 -3 131 94
9 74 73 17 115 107 Hy-6y	12 40 37 Hala 1 1 24, 226	4 139 -138 5 92 -84 6 104 98 7 46 45	$\begin{array}{cccc} H_{+} 12 + 2 \\ T & 4 + & 7 \\ 1 & 76 & -71 \\ 2 & 31 & -39 \end{array}$	-3 125 -129 -2 165 -162 -1 168 -163	3 160 -164 4 141 -148 5 168 -177 6 57 54	5 56 53 6 135 137 7 275 272 8 41 35	5 43 45 6 62 57 7 138 -133 F 44 -46	2 13 3 0 76 68 17 73 57	-6 24 23 -5 13 5 -4 19 -2
1 457 -463 2 246 -246 3 43 -42	2 376 382 3 113 121 4 165 -162	0 144 138 9 17 18 16 6 1	3 34 -32 4 17 -10	1 99 -98 1 50 48 2 25 -19	7 29 25 8 114 117 3 61 60	9 21 15 13 51 -57 11 15 -13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 17 22 H15+1	-3 175 -162 -2 146 -133 -1 190 -95 5 10* 3
4 58 51 5 107 106 6 103 196 7 50 50	5 c7 -71 6 34 -29 7 63 64 1 31 132	11 15 -15 F+6+7	H_{-12} , 1 -5 28 -32 -4 41 -35 -3 9* -6	3 239 239 4 33 28 5 68 72 6 27 -22	10 54 61 11 62 64 H,-4,1	H+-1+1 -12 ±5 -78 -11 59 -55	-12 10 12	-1.0 114 $-112-9$ 89 $-89-8$ 34 -34	1 1°1 86 2 136 126 3 79 79
8 43 39 9 34 32 13 68 -65	1 94 93 12 40 48 11 36 33	1 150 150 2 182 184 3 154 150	-2 36 33 -1 32 30 6 63 67	7 17 -16 8 127 -125 9 8* 6	-12 9* $-3-11$ 38 $-35-13$ 13* $-9-9$ 48 -49	-10 59 -55 -7 23t 233 -8 133 126 -7 112 115	-11 20 25 -1' 106 105 -9 11* -5 -0 99 103	-7 103 - 101 -6 14 9 -5 195 201 -4 114 114	5 78 74 6 17 13 7 44 -34
H,-5, 1 153 156 2 158 165	12 32 28 H+1+C 3 319 -318	5 56 54 6 57 56 7 85 -78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H,-7,1 -13 64 56 -7 48 41	-8 78 -71 -7 32 -36 -6 27 27	-6 81 95 -5 46 48 -4 47 -53	-7 219 -214 -6 250 -247 -5 310 -301	-3 286 282 -2 254 235 -1 66 -63 3 115 93	J 69 -57 9 9* -1 H.9.1
3 14 -2 4 77 -79 5 192 1J5 6 221 -220	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 35 -35 9 9 1 10 37 -31 11 35 -31	H,-11,1 -7 15 -16 -6 14 6	-8 95 -87 -7 108 -76 -6 70 -65 -5 25 -23	-5 253 253 -4 504 513 -3 192 -183 -2 115 107	-2 726 -776 -1 44 42 2 189 -169	-3 236 227 -2 35 25 -1 509 523	1 17 3 2 273 - 264 3 58 - 52	-8 83 -75 -7 100 -132 -6 169 -156
7 159 -159 8 11 -2 9 5* -15	5 112 115 6 334 327 7 111 -115	H,7,3 C 126 133	-5 33 34 -4 101 88 -3 42 39	-4 52 -48 -3 14 12 -2 61 57	-1 121 -127 3 423 -429 1 338 -348 2 291 -281	1 136 -137 2 124 -126 3 329 332 4 450 441	C 417 431 1 174 -165 2 217 -214 3 424 -420	4 30 31 5 256 239 6 79 79 7 27 -27	-5 21 -24 -4 60 -57 -3 76 66 -2 192 177
10 30 34	7 19 -17	2 125 -123	-1 11 -2		3 122 120	5 282 -268	4 32 -36	8 13 15	

Tabelle 4 (Fort.)

-1 $\frac{47}{3}$ 4.6 (1 $\frac{67}{3}$ 4.6 (4 $\frac{67}{3}$ 4.7 (4 $\frac{67}{3}$ 5.6 (4 $\frac{67}{3}$ 5.7 (1 $\frac{13}{3}$ -11 (1 $\frac{3}{3}$ -11 (1 $\frac{3}{3}$ -11 (1 $\frac{3}{3}$ -11 (1 $\frac{3}{3}$ -11 (3 $\frac{13}{3}$ -11 (4 $\frac{13}{3}$ -12 (-4 $\frac{95}{3}$ -22 (-5 $\frac{15}{3}$ -4 (-6 $\frac{11}{3}$ -12 (-7	$\begin{array}{c} -\kappa & 17 & -16 \\ -\kappa & 167 & -16 \\ -\kappa & 165 & -96 \\ -2 & 25 & 20 \\ -2 & 25 & 22 \\ -1 & 22 & 117 \\ -168 & 62 \\ 2 & 3 & 36 & -11 \\ 5 & 643 & -41 \\ 6 & 412 \\ -17 & 56 & 12 \\ -7 & 56 & 1 \\ -7 & 51 & 122 \\ -7 & 57 & 30 \\ -6 & 115 & 122 \\ -7 & 215 & 122 \\ -7 & 215 & 122 \\ -7 & 11 & 25 & -23 \\ -7 & 11 & 25 & -23 \\ -7 & 11 & 25 & -23 \\ -7 & 11 & 215 & -26 \\ -7 & 21 & 146 \\ -1 & 70 \\ -2 & 214 & 116 \\ -1 & 70 \\ 2 & 116 & -137 \\ -7 & 22 & -213 \\ 1 & 23 & 127 \\ -7 & 21 & 14 \\ -1 & 71 \\ -7 & 22 & 1-21 \\ 11 & 11 & -10 \\ -1 & 21 \\ -7 & 22 & -270 \\ -12 & 17 & -60 \\ -1 & 137 & -10 \\ -1 & 27 & -270 \\ -2 & 276 & -270 \\ -2 & 276 & -270 \\ -2 & 276 & -270 \\ -1 & 137 & -10 \\ -1 & 37 \\ -1 & 137 & -10 \\ -1 & -60 \\ -1 & 135 & -10 \\ -1 & 137 & -11 \\ -1 & -60 \\ -1 & -13 & -10 \\ -1 &$	$\begin{array}{c} - c \ 160 \ 8.1 \\ - c \ 160 \ 150 \ 157 \\ - 7 \ 200 \ 190 \ 157 \ 157 \ -75 \ 141 \ -74 \$	-3 $226 - 270$ -1 $257 - 125$ 1 $257 - 125$ 1 $257 - 125$ 1 $160 - 195$ 2 $271 - 277 - 310$ 1 $160 - 195$ 2 $271 - 277 - 310 - 174$ 4 $110 - 124$ 4 $110 - 124$ 4 $110 - 124$ 4 $110 - 124$ 5 $107 - 97$ 1 $15 - 17$ 1 $16 - 14$ H ₁ - 222 -12 5 - 3 - 30 -11 38 -35 -9 $95 - 95 - 95$ -8 $43 - 97$ -5 $53 - 51$ -4 $112 - 1306$ 4 $125 - 126$ 5 $-13 - 11 - 22$ -2 $205 - 622$ 2 $273 - 175$ 5 $11 - 22$ -2 $565 - 622$ 2 $273 - 175$ 1 $116 - 24$ 4 $120 - 92$ 5 $-16 - 337$ 2 $205 - 125 - 123$ 6 $36 - 377$ -7 $125 - 123$ 6 $36 - 377$ 1 $111 - 22$ -12 $34 - 31$ -11 $15 - 112$ H ₁ - 12 -12 $34 - 112$ -11 $15 - 113$ 1 $117 - 95$ 5 $215 - 1266$ 6 $276 - 274$ -13 $131 - 132$ -6 $276 - 274$ -13 $131 - 132$ -6 $276 - 274$ -13 $130 - 146^{-14}$ -2 $466 - 464$ 2 $416 - 459$ -4 $130 - 163$ 4 $182 - 171$ 5 $166 - 163$ 6 $67 - 64$ 1 $157 - 163$ 4 $182 - 171$ 5 $166 - 7$ -7 $137 - 163$ 4 $182 - 171$ 5 $166 - 163$ 6 $67 - 64$ -10 $-45 - 251$ 8 $19 - 220 - 216$ -10 $19 - 1855$ -2 $137 - 163$ 1 $15 - 163 - 156$ -7 $141 - 44$ -2 $126 - 280 - 280$ -3 $130 - 163$ -1 $142 - 244$ -1 $142 - 2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1 & 160 \\ 0 & 137 \\ 1 & 73 \\ 1 & 73 \\ 1 & 73 \\ 155 \\ -16 \\ 1 & 137 \\ 155 \\ -16 \\ 137 \\ 155 \\ -16 \\ 137 \\ 139 \\ 144 \\ 15 \\ -17 \\ 139 \\ 144 \\ -17 \\ 139 \\ 144 \\ -17 \\ 139 \\ 144 \\ -17 \\ 139 \\ 144 \\ -17 \\ 139 \\ -17 \\ 139 \\ -17 \\ 139 \\ -17 \\ -17 \\ 139 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -28 \\ -14 \\ -5 \\ -5 \\ -5 \\ -5 \\ -7 \\ -26 \\ -7 \\ -26 \\ -7 \\ -26 \\ -7 \\ -26 \\ -7 \\ -26 \\ -7 \\ -26 \\ -7 \\ -26 \\ -7 \\ -27 \\ -28 \\ -11 \\ -49 \\ -10 \\ -10 \\ -10 \\ -28 \\ -2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	---	--	--	---	--	--	--	--	--

Bindungslängen sind bei Kalium-Salzen durchaus üblich, so fanden zum Beispiel Van der Helm, Glusker, Johnson, Minkin, Burow & Patterson (1968) beim Mono-Kaliumsalz der Dihydrogenisozitronensäure an der ioniseirten Carboxylgruppe C-O-Abstände von 1,253 (7) und 1,263 (7) Å, (in Klammern die Standardabweichungen, bezogen auf die letzte Stelle) an den nicht ionisierten dagegen 1,301 (7) und 1,218 (7) bzw. 1,302 (7) und 1,190 (7) Å.

Damit besteht der endgültige Zellinhalt aus zwei Molekülen freier Säure, zwei K⁺-Ionen und einem zweifach negativ geladenen Säureanion, als korrekte chemische Formel muss daher angegeben werden $C_8H_{10}O_4K_2$. $2C_8H_{12}O_4$.

Es sei darauf hingewiesen, dass kürzlich eine ähnliche Struktur von Gupta & Sahu (1970) publiziert wurde. Die Verfasser berichteten über das Mono-Kalium-sesqui[Fumarsäure]-Salz, zeigten aber, dass bei ihnen einem Säuremolekül zwei einfach negativ geladene Säureionen gegenüberstanden.

Die Struktur der trans-Cyclohexandicarbonsäure(1,4)

Wie wir zeigen konnten, sind in der vorliegenden Struktur Molekül und zweifach negativ geladenes Anion der *trans*-Cyclohexandicarbonsäure nebeneinander vorhanden [Fig. 2(a) & (b)]. Ausser in den bereits genannten Bindungslängen an den Carboxylgruppen kann kein Unterschied zwischen beiden festgestellt werden. Der Cyclohexanring ist sesselförmig, die Carboxylgruppen sind beide äquatorial daran gebunden.

Die mittlere C-C-Ringbindung liegt bei 1,525 (5) Å, die C-C-Bindungslängen zum Carboxylkohlenstoff liegen bei 1,519; 1,516 und 1,510 etwas unter diesem Wert,

Tabelle 4 (Fort.)

$\begin{array}{c} +, -1, 3 \\ -4, 137, -144 \\ -2, 437, -144 \\ -2, 437, -144 \\ -2, 437, -164 \\ -2, 437, -165 \\ -2, 514 \\ -2, 5, -2, 514 \\ -2, 5, -2, 514 \\ -2, 5, -2, 514 \\ -2, 5, -2, 514 \\ -3, -2, 514 \\ -4, -5, -54 \\ -4, -5, -54 \\ -12, -54 \\ -12, -54 \\ -12, -54 \\ -13, -55 \\ -13, -55 \\ -14, -15 \\ -14, -15 \\ -14, -15 \\ -14, -15 \\ -14, -55 \\ -15, -56 \\ -15, -56 \\ -15, -56 \\ -15, -56 \\ -15, -56 \\ -2, -26 \\ -2,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mu_{+}6, 3\\ -1(-3)1 & -24\\ -37 & 310\\ -27 & 124\\ -137 & 310\\ -7 & 124\\ -137 & 310\\ -7 & 124\\ -137 & 310\\ -7 & 136\\ -7 & 136\\ -1 & 137\\ -1 & 137\\ -2 & 147\\ -2 & 137\\ -2 & 137\\ -2 & 137\\ -2 & 147\\ -2 & 137\\ -2 & 147\\ -2 & $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathbf{H}_{1} - \frac{3}{2}, 4 \\ = 7 & 4 & -8 \\ = 7 & 106 & 110^{\circ} \\ = 6 & 95 & 10^{\circ} \\ = 6 & 95 & 10^{\circ} \\ = 5 & 138 & 14^{\circ} \\ = -5 & 138 & 14^{\circ} \\ = -3 & 17 & -13^{\circ} \\ = 7 & 17 & -14^{\circ} \\ = 7 & 17 & -14^{\circ} \\ = 7 & 17 & -14^{\circ} \\ = 7 & 110^{\circ} & -17^{\circ} \\ = 7 & 10^{\circ} & -11^{\circ} \\ = 7 & 10^{\circ} & -11^{\circ} \\ = 7 & 110^{\circ} & -11^{\circ} \\ = 110^{\circ} & -11^{\circ} \\ = 110^{\circ} & -11^{\circ} \\ = 110^{\circ} & -10^{\circ} \\ = 7 & 70^{\circ} & -10^{\circ} \\ = 110^{\circ} & -10^{\circ} \\ = 10^{\circ} & -10^{\circ} \\ = 10^{\circ$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 6 & 175 & 1427 \\ 1 & 75 & 1427 \\ 2 & 221 & 201 \\ 3 & 806 & -1011 \\ 5 & 176 & -1011 \\ 5 & 176 & -1017 \\ 6 & 55 & 646 \\ 8 & 200 & 071 \\ 1 & 51 & 56 \\ -111 & 60 & -371 \\ -12 & 355 & -35 \\ -111 & 60 & -711 \\ -12 & 356 & -37 \\ -11 & 156 & -37 \\ -12 & 356 & -36 \\ -111 & 248 & -132 \\ -12 & 356 & -36 \\ -111 & 248 & -132 \\ -12 & 356 & -36 \\ -111 & 248 & -132 \\ -111$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 5 & 50 \\ -5 & 50 \\ -7 & 50 \\ -7 & 50 \\ -7 & 50 \\ -7 & 57 \\ -8 \\ -7 & 57 \\ -8 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +,7,4\\ -c & 51 & 56\\ -7 & 6 & 4\\ -5 & 16 & -66\\ -5 & 121 & -113\\ -4 & 61 & -56\\ -2 & 71 & 71\\ -2 & 7 & 12\\ -1 & 30 & 36\\ + & 155 & 167\\ 1 & 155 & 167\\ -1 & 31 & 36\\ -1 & 5 & 15\\ -3 & 15 & -13\\ -3 & 15\\ -6 & 32 & -33\\ -7 & 16 & 15\\ -6 & 33 & 36\\ -7 & 16 & 15\\ -6 & 13 & 36\\ -6 & 163 & 164\\ -5 & 163 & 164\\ -5 & 163 & 164\\ -3 & 66 & -2\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -1 & 18 & 24 \\ -3 & 63 & 87 \\ -7 & 64 & 53 \\ -8 & -8 & -1 \\ -5 & 46 & 53 \\ -3 & 227 & -233 \\ -1 & 87 & -234 \\ -3 & 227 & -233 \\ -1 & 161 & -157 \\ -1 & 17 & -81 \\ -1 & 7 & -81 \\ -1 & 7 & -11 \\ -1 & 13 \\ -1 & -11 \\ -1 & -1$

•

Fig.4. Bild des Kalium-Koordinationsoktaeders, mit eingetragenen K-O-Abständen.

Tabelle 4 (Fort.)

$\begin{array}{c} n_{1-2}, 5\\ n_{1-2}, 5\\ n_{1-2}, 5\\ n_{1-2}, 7\\ n_{1-2}, 5\\ n_{1-2}, 7\\ n_{1-2}, 7\\$	$\begin{array}{c} 1 \\ 62 \\ -7 \\ 71 \\ 22 \\ -7 \\ 71 \\ 22 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1 23 19 -1 23 19 1 13 3 2 21 16 3 120 -113 4 122 -15 5 16 16 -9 47 -47 -8 37 47 -7 62 141 142 -3 49 -47 -2 16 -14 1 153 15 -4 13 -12 -3 49 -47 -2 16 -14 1 154 147 2 16 111 -7 62 5 -3 49 -47 -2 16 -14 1 154 147 2 16 111 -7 62 5 -7 16 -14 1 154 147 2 16 111 -7 12 2 16 -7 12 2 16 -7 12 2 16 -7 13 -12 -7 13 -12 -7 13 -12 -7 12 -16 -7 12 -16 -7 12 -16 -7 12 -17 -7 12 -17 -7 12 -16 -7 12 -17 -7 12 -17 -7 12 -17 -7 12 -17 -7 13 -17 -7 13 -17 -7 12 -16 -7 12 -26 -7 13 -17 -7 25 -6 -7 13 -22 -7 15 -6 -7 13 -22 -7 13 -22	$\begin{array}{c} -6 & 133 - 117 \\ -6 & 33 & -35 \\ -7 & 43 & -35 \\ -5 & 33 & 30 \\ -4 & 229 & 195 \\ -3 & 70 & 66 \\ -2 & 31 & -46 \\ -3 & 56 & -95 \\ -1 & 86 & -95 \\ -1 & 86 & -95 \\ -1 & 86 & -95 \\ -1 & 86 & -95 \\ 1 & 27 & -174 \\ -3 & 5 & -34 \\ -9 & 56 & 51 \\ -9 & 56 & 51 \\ -9 & 56 & 51 \\ -9 & 56 & 51 \\ -9 & 56 & 51 \\ -9 & 56 & 51 \\ -7 & 155 & 136 \\ -9 & 56 & 51 \\ -7 & 155 & 136 \\ -7 & 155 & 136 \\ -7 & 155 & 136 \\ -1 & 19 & -77 \\ -5 & 146 & -127 \\ -3 & 45 & -46 \\ -7 & 62 & -57 \\ -1 & 19 & -7 \\ -5 & 166 & -127 \\ -3 & 45 & -46 \\ -7 & 62 & -57 \\ -1 & 19 & -7 \\ -5 & 166 & -127 \\ -5 & 36 & -80 \\ -7 & 62 & -57 \\ -1 & 19 & -7 \\ -5 & 155 & 136 \\ -7 & 37 & -16 \\ -7 & 37 & -16 \\ -7 & 37 & -16 \\ -7 & 37 & -16 \\ -7 & 78 & -84 \\ -7 & 37 & -31 \\ -5 & 136 & -141 \\ -2 & -153 \\ -5 & 448 & -57 \\ -7 & 78 & -84 \\ -7 & 37 & -118 \\ -7 & 37 & -16 \\ -7 & 78 & -84 \\ -7 & 37 & -31 \\ -1 & 127 & -56 \\ -7 & 78 & -84 \\ -7 & 32 & -27 \\ -7 & 78 & -84 \\ -7 & 32 & -27 \\ -7 & 78 & -84 \\ -7 & 32 & -27 \\ -7 & 78 & -84 \\ -7 & 32 & -27 \\ -7 & 78 & -84 \\ -7 & 32 & -27 \\ -7 & 78 & -84 \\ -7 & 127 & -135 \\ -1 & 47 & 61 \\ -7 & -135 \\ -7 & -3$
-13 78 83 -9 29 -26	-7 75 -113 -1 &* 1 5 83 139	-3 69 65 -2 31 27	H; (7; 6 -9 61 -54	-6 71 67
$\begin{array}{c} 4,5\mu,\\ -5113117\\ -4114116\\ -316-13\\ -267-07\\ -1637\\ -267-07\\ -1637\\ -267-07\\ -267-07\\ -267-07\\ -267-07\\ -312-16\\ -222-16\\ -312-16\\ -222-16\\ -312-16\\ -222-17\\ -466\\ -312-16\\ -222-17\\ -112617\\ -212617\\ -112617\\ -112617\\ -112617\\ -112617\\ -112617\\ -112617\\ -112617\\ -112617\\ -117\\ -$	$\begin{array}{c} 0, -6, 7\\ -6, -0.4, 1.3\\ -6, -0.4, 1.4\\ -6, -6, 2.4, 2.67\\ -3, -2.6, 2, -3, -3\\ -4, 2.4, 2.67\\ -3, -2.6, 1.5, -5.6\\ -7, -1.5, -5.6\\ -7, -1.5, -6, 1.5\\ -6, 1.5, -7.6\\ -4, 1.7, -1.1, -3, 1.25, -1.17\\ -3, -1.5, -1.6\\ -1, -7, -1.4\\ -3, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.17\\ -7, 1.25, -1.15\\ -7, 1.25, -1.25\\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2 \ 125 \ 134 \\ -1 \ 153 \ 177 \\ 74 \ 81 \\ 1 \ 25 \ 25 \ 25 \\ 2 \ 114 \ -13 \\ +2 \ 7 \\ -4 \ 81 \ 82 \\ -3 \ 7 \ 63 \\ -5 \ 7 \ 63 \\ -3 \ 7 \ 63 \\ -2 \ 57 \ -76 \\ -1 \ 88 \ -72 \\ -3 \ 7 \ 63 \\ -1 \ 68 \ -72 \\ 7 \ 65 \ -111 \\ 1 \ 75 \ -67 \\ -4 \ 14 \ -13 \\ -3 \ 128 \ -15 \\ -3 \ 33 \ -14 \\ -1 \ 114 \ 26 \\ 3 \ 114 \ 16 \end{array}$

doch sollte man bei drei Werten vielleicht noch nicht von einer signifikanten Abweichung sprechen. Bei den C-H-Bindungslängen ist naturgemäss die Streuung wesentlich grösser, der Mittelwert liegt hier bei 1,03 (7) Å. Die Bindungswinkel sind in Tabelle 2 enthalten. Der mittlere C-C-C-Bindungswinkel der Cyclohexanringe liegt bei 111,1° und stimmt damit genau mit dem Wert überein, den Rao & Sundaralingam (1969) beim Cyclohexylammoniumchlorid fanden. Die dort festgestellte Abweichung vom idealen Tetraederwinkel von 109,5° kann hier bestätigt werden. Ob sie als signifikant zu bezeichnen ist, kann nicht ohne weiteres entschieden werden, da die mittlere Streuung der Einzelwerte immerhin bei $\pm 1,4°$ liegt.

Die Bindungswinkel an den Cyclohexanringen, bei denen Wasserstoffatome beteiligt sing, schwanken zwischen 93,6 und 118,9°, immerhin liegt ihr Mittelwert mit 108,5° bei einer mittleren Streuung von $\pm 4,5°$ in recht guter Nähe des Tetraederwinkels.

Aufbau des Gitters

Fig. 3 zeigt eine ungefähre x-y-Projektion des Gitters, die positive z-Achse zeigt aus der Zeichenebene heraus. Die Zeichnung soll nur eine schematische Darstellung des Gitters geben und nicht unbedingt Einzelheiten naturgetreu wiedergeben. Die Cyclohexanringe sind nur als Striche dargestellt, die Wasserstoffbrücken zwischen den Carboxylgruppen sind punktiert. Einen guten Überblick über das Gitter erhält man, wenn man den Zusammenhang der Moleküle 1 und 3 über die Wasserstoffbrücke H(10) durch mehrere Gitterzellen verfolgt. Es empfiehlt sich, zunächst die links unten liegende Zelle zu beachten. Das Molekül $M3_0^0$ möge um das Symmetriezentrum $(0, 0, \frac{1}{2})$ angeordnet sein. Dann wird es durch die Brücke H(10) mit dem um $(\frac{1}{2}, \frac{1}{2}, 1)$ gelegenen Molekül $M \downarrow_0^0$ verbunden. Durch die Wirkung des Symmetriezentrums $(\frac{1}{2}, \frac{1}{2}, 1)$ wird die Verbindung zum Molekül M3¹ fortgesetzt, das nun aber in x und z schon um eine Translationsperiode in positiver und in y in negativer Richtung verschoben ist. Durch Wiederholung dieses Vorganges kommt man über $M1_1^0$ mach $M3_2^0$ usw., man erkennt eine Kette K_0 , die sich in negativer y- und in positiver x- und z-Richtung treppenförmig fortsetzt, es ist daher zu beachten, dass beim Übergang von $M3_i^0$ nach $M3_{i+1}^0$ das Niveau in z-Richtung um eine Translationsperiode zugenommen hat.

Die Kette K_1 soll die aus K_0 durch Verschiebung um eine Translationsperiode in positive y- und z-Richtung entstandene sein, allgemein $K_{i+1} = K_i + (0, 1, 1)$. Es ist also beim Betrachten der Zeichnung auch in y-Richtung nach jeder Translation eine Erhöhung des z-Niveaus um eine Translation zu beachten. Weshalb gerade solche speziellen Molekülketten ausgewählt werden, wird deutlich, wenn man die Rolle des bisher noch nicht betrachteten Moleküls M2 untersucht. Dieses stellt die Verbindung zwischen verschiedenen Ketten her und zwar verbindet gerade das um $(\frac{1}{2}, 0, \frac{1}{2})$ gelegene die Ketten K_0 und K_1 , genauer die Moleküle $M3_0^0$ und $M3_1^1$ über die Wasserstoffbrücke H(20). Die ohne das M2 relativ leicht gegeneinander verschiebbaren Ketten sind durch diese Verbindung zu einem festen Netzwerk stabilisiert. Vervollständigt wird das Gitter durch die Kalium-Kationen, die die im Bereich der aneinanderstossenden Carboxylgruppen noch vorhandenen Lükken ausfüllen. Sie sind in sechsfacher Koordination von Sauerstoffatomen umgeben, das Koordinationspolyeder ist ein stark deformiertes Oktaeder (Fig. 4). Der mittlere Koordinationsabstand beträgt 2,787 Å.

Von Interesse wäre jetzt die Kristallstruktur der trans-Cyclohexandicarbonsäure(1,4), die, abgesehen von Gitterkonstanten und Raumgruppe $(a_1 = 5,61; a_2 =$ 8,07; $a_3 = 9,64$ Å; $\alpha_2 = 72,8^\circ$; $P2_1/c$), noch nicht bekannt ist. Durch Vergleich der Strukturmodelle sollte sich vielleicht ermitteln lassen, ob und welchen Einfluss die Kaliumkationen auf die Form des Moleküls und den Aufbau des Gitters haben. Endgültigen Atomparameter sind in Tabelle 3, und beobachtete und berechnete Strukturfaktoren sind in Tabelle 4 enthalten.

Wir danken der Deutschen Forschungsgemeinschaft für die Bereitstellung von Sachmitteln und für die Überlassung des Automatischen Einkristalldiffraktometers. Dem Rechenzentrum des Fritz-Haber-Instituts der Max-Plank-Gesellschaft, dem Rechenzentrum des Hahn-Meitner-Instituts und dem Deutschen Rechenzentrum in Darmstadt danken wir für die Durchführung unserer Computer-Berechnungen.

Literatur

- GUPTA, M. P. & SAHU, R. G. (1970). Acta Cryst. B26, 61.
- LUGER, P., PLIETH, K. & RUBAN, G. (1970). Z. Kristallogr. 132, 236.
- RAO, S. T. & SUNDARALINGAM, M. (1969). Acta Cryst. B25, 2509.
- VAN DER HELM, D., GLUSKER, J. P., JOHNSON, C. K., MIN-KIN, J. A., BUROW, N. E. & PATTERSON, A. L. (1968). *Acta Cryst.* B24, 578.
- X-ray 63 Handbook (1963). Univ. of Washington, Univ. of Maryland.

Acta Cryst. (1972). B28, 706

Die Kristallstruktur der trans-Cyclohexandicarbonsäure(1,4)

VON P. LUGER, K. PLIETH UND G. RUBAN

Freie Universität Berlin, Institut für Kristallographie, 1 Berlin 33, Takustrasse 6, Deutschland

(Eingegangen am 13. Mai 1971)

The crystal structure of *trans*-cyclohexane-1,4-dicarboxylic acid has been determined by X-ray analysis. The crystals are monoclinic, space group $P2_1/c$, with a=5.605, b=8.069, c=9.644 Å, $\beta=107.24^{\circ}$, Z=2. The structure was refined by the method of full-matrix least squares to a final R value of 7.4%. The centres of the two molecules are situated at crystallographic symmetry centres.

Dicarbonsäuren cyclischer Kohlenstoffverbindungen sind seit kurzer Zeit Gegenstand zahlreicher röntgenographischer Untersuchungen (Benedetti, Pedone & Allegra, 1970; Benedetti, Corradini, Pedone & Post, 1969; Benedetti, Corradini & Pedone, 1969; Adman & Margulis, 1968).

Besonderes Interesse fanden die Cyclohexandicarbonsäuren, von denen im vergangenen Jahr sämtliche (1,2)-Säuren geklärt wurden. Uns gelang es zunächst, über die Strukturauf klärung des Mono-Kalium-sesqui-[*trans*-Cyclohexandicarbonsäure (1,4)]-salzes (KRAC 14), das Molekül und das zweifach negativ geladene Anion der *trans*-Cylochexandicarbonsäure(1,4) (TRAC 14) zu beschreiben (Luger, Plieth & Ruban, 1970, 1972).

Gegenstand dieser Arbeit ist nun die Kristallstruktur der freien (1,4)-Säure.

Experimentelles

Gute Einkristalle sind leicht aus wässriger Lösung durch Einengen zu erhalten.

Tabelle 1. Kristallographische Daten der trans-Cyclohexandicarbonsäure (1,4)

Bruttoformel: $C_8H_{12}O_4$; Molekulargewicht: 172,18 Dichte: $\varrho_{exp} = (1,34 \pm 0,04)$ g.cm⁻³ (Schwebemethode) $\varrho_X = 1,36$ g.cm⁻³; Z=2Monoklin, Raumgruppe: $P_{21}/c C_{2h}^5$ Gitterkonstanten: $a = (5,605 \pm 0,004)$ Å $b = (8,069 \pm 0,005)$ $c = (9,644 \pm 0,006)$ $\beta = 107,24 \pm 0,02^{\circ}$ Zellvolumen: $V = (416,6 \pm 0,5)$ Å³ F(000) = 184

Linearer Schwächungskoeffizient: $\mu = 9.4 \text{ cm}^{-1}$ (Cu Ka)

Fig. 1. Doppeltes Gewicht des C-C-Vektors, der den Cyclohexanring mit dem Carboxylkohlenstoffatom verbindet.